欢迎光临中国科学技术大学校园百科!

校园百科

陈世炳

陈世炳,男,现任数学科学学院“青年创新人才计划”教授。

  • 中文名:陈世炳
  • 所在单位:数院数学系
  • 职称:教授
  • 研究方向:偏微分方程及其应用

个人简介

研究领域

学习工作简历

联系信息

 办 公 室          管理科研楼1609室    

 办公电话    

 电子邮件          chenshib@ustc.edu.cn    

科研情况

[1] A new family of sharp conformally invariant integral inequalities, Int. Math. Res. Not. (2014), no. 5, 1205-1220.

[2] (with T. Weth and R. Frank) Remainder terms in the fractional Sobolev inequality, Indiana Univ. Math. J. 62 (2013), no. 4, 1381-1397.

[3] Classifying convex compact ancient solutions to the affine curve shortening flow, J. Geom. Anal. 25 (2015), no. 2, 1075-1079.

[4] Convex solutions to the power-of-mean curvature flow, Pacific J. Math. 276 (2015), no. 1, 117-141.

[5] (with E. Indrei ) On the regularity of the free boundary in the optimal partial transport problem for general cost functions, J. Differential Equations. 258 (2015), no. 7, 2618-2632.

[6] (with A. Figalli) Boundary ε-regularity in optimal transportation. Adv. Math. 273 (2015), 540-567.

[7] Boundary C1,α regularity of an optimal transport problem with cost close to −x · y, SIAM J. Math. Anal. 47 (2015), no. 4, 2689-2698.

[8] (with X.-J. Wang) Strict convexity and C1,α regularity of potential functions in optimal transportation under condition A3W. J. Differential Equations. 260 (2016), 2, 1954-1974.

[9] (with A. Figalli) Stability results on the smoothness of optimal transport maps with general costs, J. Math. Pures Appl. 106 (2016), no. 2, 280-295.

[10] (with E. Andriyanova) Boundary C1,α regularity of potential functions in optimal transportation with quadratic cost. Analysis and PDE. 9 (2016), no. 6, 1483-1496.

[11] (with A. Figalli) Partial W2,p regularity for optimal transport maps. J. Funct. Anal. 272 (2017), no. 11, 4588-4605.

[12 Regularity of free boundary in optimal transportation. Preprint.

[13] (with Qi-rui Li and Guangxian Zhu) The logarithmic Minkowski problem for non-symmetric measures. Accepted by Transaction AMS.

[14] (with Qi-rui Li and Guangxian Zhu) On the Lp Monge-Amp`ere equation. J. Differential Equations. 263, no. 8, (2017), 4997-5011

[15] (with Qi-rui Li) On the planar dual Minkowski problem. Advances in Math, to appear.

[16] (with Jiakun Liu and Xu-Jia Wang) Global regularity for the Monge- Amp`ere equation with natural boundary condition. Preprint.

[17] (with Jiakun Liu and Xu-Jia Wang) Boundary regularity for the second boundary-value problem of Monge-Amp\`ere equations in dimension two. Preprint.



校园相关

陈世炳教授为现任中国科学技术大学数学学院“青年创新人才计划”教授。

标签

同义词

手机端

手机端

联系我们

中国科学技术大学网络信息中心
中国科学技术大学 ©2018-2022